1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use data_type::AsBytes;
pub fn hash<T: AsBytes>(data: &T, seed: u32) -> u32 {
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
if is_x86_feature_detected!("sse4.2") {
unsafe { crc32_hash(data, seed) }
} else {
murmur_hash2_64a(data, seed as u64) as u32
}
}
}
const MURMUR_PRIME: u64 = 0xc6a4a7935bd1e995;
const MURMUR_R: i32 = 47;
fn murmur_hash2_64a<T: AsBytes>(data: &T, seed: u64) -> u64 {
let data_bytes = data.as_bytes();
let len = data_bytes.len();
let len_64 = (len / 8) * 8;
let data_bytes_64 = unsafe {
::std::slice::from_raw_parts(
&data_bytes[0..len_64] as *const [u8] as *const u64,
len / 8,
)
};
let mut h = seed ^ (MURMUR_PRIME.wrapping_mul(data_bytes.len() as u64));
for v in data_bytes_64 {
let mut k = *v;
k = k.wrapping_mul(MURMUR_PRIME);
k ^= k >> MURMUR_R;
k = k.wrapping_mul(MURMUR_PRIME);
h ^= k;
h = h.wrapping_mul(MURMUR_PRIME);
}
let data2 = &data_bytes[len_64..];
let v = len & 7;
if v == 7 {
h ^= (data2[6] as u64) << 48;
}
if v >= 6 {
h ^= (data2[5] as u64) << 40;
}
if v >= 5 {
h ^= (data2[4] as u64) << 32;
}
if v >= 4 {
h ^= (data2[3] as u64) << 24;
}
if v >= 3 {
h ^= (data2[2] as u64) << 16;
}
if v >= 2 {
h ^= (data2[1] as u64) << 8;
}
if v >= 1 {
h ^= data2[0] as u64;
}
if v > 0 {
h = h.wrapping_mul(MURMUR_PRIME);
}
h ^= h >> MURMUR_R;
h = h.wrapping_mul(MURMUR_PRIME);
h ^= h >> MURMUR_R;
h
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[target_feature(enable = "sse4.2")]
unsafe fn crc32_hash<T: AsBytes>(data: &T, seed: u32) -> u32 {
#[cfg(target_arch = "x86")]
use std::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::*;
let bytes: &[u8] = data.as_bytes();
let u32_num_bytes = ::std::mem::size_of::<u32>();
let mut num_bytes = bytes.len();
let num_words = num_bytes / u32_num_bytes;
num_bytes %= u32_num_bytes;
let bytes_u32: &[u32] = ::std::slice::from_raw_parts(
&bytes[0..num_words * u32_num_bytes] as *const [u8] as *const u32,
num_words,
);
let mut offset = 0;
let mut hash = seed;
while offset < num_words {
hash = _mm_crc32_u32(hash, bytes_u32[offset]);
offset += 1;
}
offset = num_words * u32_num_bytes;
while offset < num_bytes {
hash = _mm_crc32_u8(hash, bytes[offset]);
offset += 1;
}
hash = (hash << 16) | (hash >> 16);
hash
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_murmur2_64a() {
let result = murmur_hash2_64a(&"hello", 123);
assert_eq!(result, 2597646618390559622);
let result = murmur_hash2_64a(&"helloworld", 123);
assert_eq!(result, 4934371746140206573);
let result = murmur_hash2_64a(&"helloworldparquet", 123);
assert_eq!(result, 2392198230801491746);
}
#[test]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn test_crc32() {
if is_x86_feature_detected!("sse4.2") {
unsafe {
let result = crc32_hash(&"hello", 123);
assert_eq!(result, 2927487359);
let result = crc32_hash(&"helloworld", 123);
assert_eq!(result, 314229527);
let result = crc32_hash(&"helloworldparquet", 123);
assert_eq!(result, 667078870);
}
}
}
}