1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Contains all supported encoders for Parquet.

use std::cmp;
use std::io::Write;
use std::marker::PhantomData;
use std::mem;
use std::slice;

use basic::*;
use data_type::*;
use encodings::rle::RleEncoder;
use errors::{ParquetError, Result};
use schema::types::ColumnDescPtr;
use util::bit_util::{log2, num_required_bits, BitWriter};
use util::memory::{Buffer, ByteBuffer, ByteBufferPtr, MemTrackerPtr};
use util::hash_util;

// ----------------------------------------------------------------------
// Encoders

/// An Parquet encoder for the data type `T`.
///
/// Currently this allocates internal buffers for the encoded values. After done putting
/// values, caller should call `flush_buffer()` to get an immutable buffer pointer.
pub trait Encoder<T: DataType> {
  /// Encodes data from `values`.
  fn put(&mut self, values: &[T::T]) -> Result<()>;

  /// Returns the encoding type of this encoder.
  fn encoding(&self) -> Encoding;

  /// Returns an estimate of the encoded data, in bytes.
  /// Method call must be O(1).
  fn estimated_data_encoded_size(&self) -> usize;

  /// Flushes the underlying byte buffer that's being processed by this encoder, and
  /// return the immutable copy of it. This will also reset the internal state.
  fn flush_buffer(&mut self) -> Result<ByteBufferPtr>;
}

/// Gets a encoder for the particular data type `T` and encoding `encoding`. Memory usage
/// for the encoder instance is tracked by `mem_tracker`.
pub fn get_encoder<T: DataType>(
  desc: ColumnDescPtr,
  encoding: Encoding,
  mem_tracker: MemTrackerPtr
) -> Result<Box<Encoder<T>>> {
  let encoder: Box<Encoder<T>> = match encoding {
    Encoding::PLAIN => {
      Box::new(PlainEncoder::new(desc, mem_tracker, vec![]))
    },
    Encoding::RLE_DICTIONARY | Encoding::PLAIN_DICTIONARY => {
      return Err(general_err!("Cannot initialize this encoding through this function"))
    },
    Encoding::RLE => {
      Box::new(RleValueEncoder::new())
    },
    Encoding::DELTA_BINARY_PACKED => {
      Box::new(DeltaBitPackEncoder::new())
    },
    Encoding::DELTA_LENGTH_BYTE_ARRAY => {
      Box::new(DeltaLengthByteArrayEncoder::new())
    },
    Encoding::DELTA_BYTE_ARRAY => {
      Box::new(DeltaByteArrayEncoder::new())
    },
    e => return Err(nyi_err!("Encoding {} is not supported", e))
  };
  Ok(encoder)
}

// ----------------------------------------------------------------------
// Plain encoding

/// Plain encoding that supports all types.
/// Values are encoded back to back.
/// The plain encoding is used whenever a more efficient encoding can not be used.
/// It stores the data in the following format:
/// - BOOLEAN - 1 bit per value, 0 is false; 1 is true.
/// - INT32 - 4 bytes per value, stored as little-endian.
/// - INT64 - 8 bytes per value, stored as little-endian.
/// - FLOAT - 4 bytes per value, stored as IEEE little-endian.
/// - DOUBLE - 8 bytes per value, stored as IEEE little-endian.
/// - BYTE_ARRAY - 4 byte length stored as little endian, followed by bytes.
/// - FIXED_LEN_BYTE_ARRAY - just the bytes are stored.
pub struct PlainEncoder<T: DataType> {
  buffer: ByteBuffer,
  bit_writer: BitWriter,
  desc: ColumnDescPtr,
  _phantom: PhantomData<T>
}

impl<T: DataType> PlainEncoder<T> {
  /// Creates new plain encoder.
  pub fn new(desc: ColumnDescPtr, mem_tracker: MemTrackerPtr, vec: Vec<u8>) -> Self {
    let mut byte_buffer = ByteBuffer::new().with_mem_tracker(mem_tracker);
    byte_buffer.set_data(vec);
    Self {
      buffer: byte_buffer,
      bit_writer: BitWriter::new(256),
      desc: desc,
      _phantom: PhantomData
    }
  }
}

impl<T: DataType> Encoder<T> for PlainEncoder<T> {
  default fn put(&mut self, values: &[T::T]) -> Result<()> {
    let bytes = unsafe {
      slice::from_raw_parts(
        values as *const [T::T] as *const u8,
        mem::size_of::<T::T>() * values.len()
      )
    };
    self.buffer.write(bytes)?;
    Ok(())
  }

  fn encoding(&self) -> Encoding {
    Encoding::PLAIN
  }

  fn estimated_data_encoded_size(&self) -> usize {
    self.buffer.size() + self.bit_writer.bytes_written()
  }

  #[inline]
  default fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    self.buffer.write(self.bit_writer.flush_buffer())?;
    self.buffer.flush()?;
    self.bit_writer.clear();

    Ok(self.buffer.consume())
  }
}

impl Encoder<BoolType> for PlainEncoder<BoolType> {
  fn put(&mut self, values: &[bool]) -> Result<()> {
    for v in values {
      self.bit_writer.put_value(*v as u64, 1);
    }
    Ok(())
  }
}

impl Encoder<Int96Type> for PlainEncoder<Int96Type> {
  fn put(&mut self, values: &[Int96]) -> Result<()> {
    for v in values {
      self.buffer.write(v.as_bytes())?;
    }
    self.buffer.flush()?;
    Ok(())
  }
}

impl Encoder<ByteArrayType> for PlainEncoder<ByteArrayType> {
  fn put(&mut self, values: &[ByteArray]) -> Result<()> {
    for v in values {
      self.buffer.write(&(v.len().to_le() as u32).as_bytes())?;
      self.buffer.write(v.data())?;
    }
    self.buffer.flush()?;
    Ok(())
  }
}

impl Encoder<FixedLenByteArrayType> for PlainEncoder<FixedLenByteArrayType> {
  fn put(&mut self, values: &[ByteArray]) -> Result<()> {
    for v in values {
      self.buffer.write(v.data())?;
    }
    self.buffer.flush()?;
    Ok(())
  }
}

// ----------------------------------------------------------------------
// Dictionary encoding

const INITIAL_HASH_TABLE_SIZE: usize = 1024;
const MAX_HASH_LOAD: f32 = 0.7;
const HASH_SLOT_EMPTY: i32 = -1;

/// Dictionary encoder.
/// The dictionary encoding builds a dictionary of values encountered in a given column.
/// The dictionary page is written first, before the data pages of the column chunk.
///
/// Dictionary page format: the entries in the dictionary - in dictionary order -
/// using the plain encoding.
///
/// Data page format: the bit width used to encode the entry ids stored as 1 byte
/// (max bit width = 32), followed by the values encoded using RLE/Bit packed described
/// above (with the given bit width).
pub struct DictEncoder<T: DataType> {
  // Descriptor for the column to be encoded.
  desc: ColumnDescPtr,

  // Size of the table. **Must be** a power of 2.
  hash_table_size: usize,

  // Store `hash_table_size` - 1, so that `j & mod_bitmask` is equivalent to
  // `j % hash_table_size`, but uses far fewer CPU cycles.
  mod_bitmask: u32,

  // Stores indices which map (many-to-one) to the values in the `uniques` array.
  // Here we are using fix-sized array with linear probing.
  // A slot with `HASH_SLOT_EMPTY` indicates the slot is not currently occupied.
  hash_slots: Buffer<i32>,

  // Indices that have not yet be written out by `write_indices()`.
  buffered_indices: Buffer<i32>,

  // The unique observed values.
  uniques: Buffer<T::T>,

  // Size in bytes needed to encode this dictionary.
  uniques_size_in_bytes: usize,

  // Tracking memory usage for the various data structures in this struct.
  mem_tracker: MemTrackerPtr
}

impl<T: DataType> DictEncoder<T> {
  /// Creates new dictionary encoder.
  pub fn new(desc: ColumnDescPtr, mem_tracker: MemTrackerPtr) -> Self {
    let mut slots = Buffer::new().with_mem_tracker(mem_tracker.clone());
    slots.resize(INITIAL_HASH_TABLE_SIZE, -1);
    Self {
      desc: desc,
      hash_table_size: INITIAL_HASH_TABLE_SIZE,
      mod_bitmask: (INITIAL_HASH_TABLE_SIZE - 1) as u32,
      hash_slots: slots,
      buffered_indices: Buffer::new().with_mem_tracker(mem_tracker.clone()),
      uniques: Buffer::new().with_mem_tracker(mem_tracker.clone()),
      uniques_size_in_bytes: 0,
      mem_tracker: mem_tracker
    }
  }

  /// Returns true if dictionary entries are sorted, false otherwise.
  #[inline]
  pub fn is_sorted(&self) -> bool {
    // Sorting is not supported currently.
    false
  }

  /// Returns number of unique values (keys) in the dictionary.
  pub fn num_entries(&self) -> usize {
    self.uniques.size()
  }

  /// Returns size of unique values (keys) in the dictionary, in bytes.
  pub fn dict_encoded_size(&self) -> usize {
    self.uniques_size_in_bytes
  }

  /// Writes out the dictionary values with PLAIN encoding in a byte buffer, and return
  /// the result.
  #[inline]
  pub fn write_dict(&self) -> Result<ByteBufferPtr> {
    let mut plain_encoder = PlainEncoder::<T>::new(
      self.desc.clone(), self.mem_tracker.clone(), vec![]);
    plain_encoder.put(self.uniques.data())?;
    plain_encoder.flush_buffer()
  }

  /// Writes out the dictionary values with RLE encoding in a byte buffer, and return the
  /// result.
  #[inline]
  pub fn write_indices(&mut self) -> Result<ByteBufferPtr> {
    // TODO: the caller should allocate the buffer
    let buffer_len = self.estimated_data_encoded_size();
    let mut buffer: Vec<u8> = vec![0; buffer_len as usize];
    buffer[0] = self.bit_width() as u8;
    self.mem_tracker.alloc(buffer.capacity() as i64);

    // Write bit width in the first byte
    buffer.write((self.bit_width() as u8).as_bytes())?;
    let mut encoder = RleEncoder::new_from_buf(self.bit_width(), buffer, 1);
    for index in self.buffered_indices.data() {
      if !encoder.put(*index as u64)? {
        return Err(general_err!("Encoder doesn't have enough space"));
      }
    }
    self.buffered_indices.clear();
    Ok(ByteBufferPtr::new(encoder.consume()?))
  }

  #[inline]
  fn put_one(&mut self, value: &T::T) -> Result<()> {
    let mut j = (hash_util::hash(value, 0) & self.mod_bitmask) as usize;
    let mut index = self.hash_slots[j];

    while index != HASH_SLOT_EMPTY && self.uniques[index as usize] != *value {
      j += 1;
      if j == self.hash_table_size {
        j = 0;
      }
      index = self.hash_slots[j];
    }

    if index == HASH_SLOT_EMPTY {
      index = self.uniques.size() as i32;
      self.hash_slots[j] = index;
      self.add_dict_key(value.clone());

      if self.uniques.size() > (self.hash_table_size as f32 * MAX_HASH_LOAD) as usize {
        self.double_table_size();
      }
    }

    self.buffered_indices.push(index);
    Ok(())
  }

  #[inline]
  fn add_dict_key(&mut self, value: T::T) {
    self.uniques_size_in_bytes += self.get_encoded_size(&value);
    self.uniques.push(value);
  }

  #[inline]
  fn bit_width(&self) -> u8 {
    let num_entries = self.uniques.size();
    if num_entries == 0 { 0 }
    else if num_entries == 1 { 1 }
    else { log2(num_entries as u64) as u8 }
  }

  #[inline]
  fn double_table_size(&mut self) {
    let new_size = self.hash_table_size * 2;
    let mut new_hash_slots = Buffer::new().with_mem_tracker(self.mem_tracker.clone());
    new_hash_slots.resize(new_size, HASH_SLOT_EMPTY);
    for i in 0..self.hash_table_size {
      let index = self.hash_slots[i];
      if index == HASH_SLOT_EMPTY {
        continue;
      }
      let value = &self.uniques[index as usize];
      let mut j = (hash_util::hash(value, 0) & ((new_size - 1) as u32)) as usize;
      let mut slot = new_hash_slots[j];
      while slot != HASH_SLOT_EMPTY && self.uniques[slot as usize] != *value {
        j += 1;
        if j == new_size {
          j = 0;
        }
        slot = new_hash_slots[j];
      }

      new_hash_slots[j] = index;
    }

    self.hash_table_size = new_size;
    self.mod_bitmask = (new_size - 1) as u32;
    mem::replace(&mut self.hash_slots, new_hash_slots);
  }
}

impl<T: DataType> Encoder<T> for DictEncoder<T> {
  #[inline]
  fn put(&mut self, values: &[T::T]) -> Result<()> {
    for i in values {
      self.put_one(&i)?
    }
    Ok(())
  }

  #[inline]
  fn encoding(&self) -> Encoding {
    Encoding::PLAIN_DICTIONARY
  }

  #[inline]
  fn estimated_data_encoded_size(&self) -> usize {
    let bit_width = self.bit_width();
    1 + RleEncoder::min_buffer_size(bit_width) +
      RleEncoder::max_buffer_size(bit_width, self.buffered_indices.size())
  }

  #[inline]
  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    self.write_indices()
  }
}

/// Provides encoded size for a data type.
/// This is a workaround to calculate dictionary size in bytes.
trait DictEncodedSize<T: DataType> {
  #[inline]
  fn get_encoded_size(&self, value: &T::T) -> usize;
}

impl<T: DataType> DictEncodedSize<T> for DictEncoder<T> {
  #[inline]
  default fn get_encoded_size(&self, _: &T::T) -> usize {
    mem::size_of::<T::T>()
  }
}

impl DictEncodedSize<ByteArrayType> for DictEncoder<ByteArrayType> {
  #[inline]
  fn get_encoded_size(&self, value: &ByteArray) -> usize {
    mem::size_of::<u32>() + value.len()
  }
}

impl DictEncodedSize<FixedLenByteArrayType> for DictEncoder<FixedLenByteArrayType> {
  #[inline]
  fn get_encoded_size(&self, _value: &ByteArray) -> usize {
    self.desc.type_length() as usize
  }
}

// ----------------------------------------------------------------------
// RLE encoding

const DEFAULT_RLE_BUFFER_LEN: usize = 1024;

/// RLE/Bit-Packing hybrid encoding for values.
/// Currently is used only for data pages v2 and supports boolean types.
pub struct RleValueEncoder<T: DataType> {
  // Buffer with raw values that we collect,
  // when flushing buffer they are encoded using RLE encoder
  encoder: Option<RleEncoder>,
  _phantom: PhantomData<T>
}

impl<T: DataType> RleValueEncoder<T> {
  /// Creates new rle value encoder.
  pub fn new() -> Self {
    Self {
      encoder: None,
      _phantom: PhantomData
    }
  }
}

impl<T: DataType> Encoder<T> for RleValueEncoder<T> {
  #[inline]
  default fn put(&mut self, _values: &[T::T]) -> Result<()> {
    panic!("RleValueEncoder only supports BoolType");
  }

  fn encoding(&self) -> Encoding {
    Encoding::RLE
  }

  #[inline]
  default fn estimated_data_encoded_size(&self) -> usize {
    match self.encoder {
      Some(ref enc) => enc.len(),
      None => 0
    }
  }

  #[inline]
  default fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    panic!("RleValueEncoder only supports BoolType");
  }
}

impl Encoder<BoolType> for RleValueEncoder<BoolType> {
  #[inline]
  default fn put(&mut self, values: &[bool]) -> Result<()> {
    if self.encoder.is_none() {
      self.encoder = Some(RleEncoder::new(1, DEFAULT_RLE_BUFFER_LEN));
    }
    let rle_encoder = self.encoder.as_mut().unwrap();
    for value in values {
      if !rle_encoder.put(*value as u64)? {
        return Err(general_err!("RLE buffer is full"));
      }
    }
    Ok(())
  }

  #[inline]
  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    assert!(self.encoder.is_some(), "RLE value encoder is not initialized");
    let rle_encoder = self.encoder.as_mut().unwrap();

    // Flush all encoder buffers and raw values
    let encoded_data = {
      let buf = rle_encoder.flush_buffer()?;

      // Note that buf does not have any offset, all data is encoded bytes
      let len = (buf.len() as i32).to_le();
      let len_bytes = len.as_bytes();
      let mut encoded_data = Vec::new();
      encoded_data.extend_from_slice(len_bytes);
      encoded_data.extend_from_slice(buf);
      encoded_data
    };
    // Reset rle encoder for the next batch
    rle_encoder.clear();

    Ok(ByteBufferPtr::new(encoded_data))
  }
}

// ----------------------------------------------------------------------
// DELTA_BINARY_PACKED encoding

const MAX_PAGE_HEADER_WRITER_SIZE: usize = 32;
const MAX_BIT_WRITER_SIZE: usize = 10 * 1024 * 1024;
const DEFAULT_BLOCK_SIZE: usize = 128;
const DEFAULT_NUM_MINI_BLOCKS: usize = 4;

/// Delta bit packed encoder.
/// Consists of a header followed by blocks of delta encoded values binary packed.
///
/// Delta-binary-packing:
/// ```shell
///   [page-header] [block 1], [block 2], ... [block N]
/// ```
///
/// Each page header consists of:
/// ```shell
///   [block size] [number of miniblocks in a block] [total value count] [first value]
/// ```
///
/// Each block consists of:
/// ```shell
///   [min delta] [list of bitwidths of miniblocks] [miniblocks]
/// ```
///
/// Current implementation writes values in `put` method, multiple calls to `put` to
/// existing block or start new block if block size is exceeded. Calling `flush_buffer`
/// writes out all data and resets internal state, including page header.
///
/// Supports only INT32 and INT64.
pub struct DeltaBitPackEncoder<T: DataType> {
  page_header_writer: BitWriter,
  bit_writer: BitWriter,
  total_values: usize,
  first_value: i64,
  current_value: i64,
  block_size: usize,
  mini_block_size: usize,
  num_mini_blocks: usize,
  values_in_block: usize,
  deltas: Vec<i64>,
  _phantom: PhantomData<T>
}

impl<T: DataType> DeltaBitPackEncoder<T> {
  /// Creates new delta bit packed encoder.
  pub fn new() -> Self {
    let block_size = DEFAULT_BLOCK_SIZE;
    let num_mini_blocks = DEFAULT_NUM_MINI_BLOCKS;
    let mini_block_size = block_size / num_mini_blocks;
    assert!(mini_block_size % 8 == 0);
    Self::assert_supported_type();

    DeltaBitPackEncoder {
      page_header_writer: BitWriter::new(MAX_PAGE_HEADER_WRITER_SIZE),
      bit_writer: BitWriter::new(MAX_BIT_WRITER_SIZE),
      total_values: 0,
      first_value: 0,
      current_value: 0, // current value to keep adding deltas
      block_size: block_size, // can write fewer values than block size for last block
      mini_block_size: mini_block_size,
      num_mini_blocks: num_mini_blocks,
      values_in_block: 0, // will be at most block_size
      deltas: vec![0; block_size],
      _phantom: PhantomData
    }
  }

  /// Writes page header for blocks, this method is invoked when we are done encoding
  /// values. It is also okay to encode when no values have been provided
  fn write_page_header(&mut self) {
    // We ignore the result of each 'put' operation, because MAX_PAGE_HEADER_WRITER_SIZE
    // is chosen to fit all header values and guarantees that writes will not fail.

    // Write the size of each block
    self.page_header_writer.put_vlq_int(self.block_size as u64);
    // Write the number of mini blocks
    self.page_header_writer.put_vlq_int(self.num_mini_blocks as u64);
    // Write the number of all values (including non-encoded first value)
    self.page_header_writer.put_vlq_int(self.total_values as u64);
    // Write first value
    self.page_header_writer.put_zigzag_vlq_int(self.first_value);
  }

  // Write current delta buffer (<= 'block size' values) into bit writer
  fn flush_block_values(&mut self) -> Result<()> {
    if self.values_in_block == 0 {
      return Ok(())
    }

    let mut min_delta = i64::max_value();
    for i in 0..self.values_in_block {
      min_delta = cmp::min(min_delta, self.deltas[i]);
    }

    // Write min delta
    self.bit_writer.put_zigzag_vlq_int(min_delta);

    // Slice to store bit width for each mini block
    // apply unsafe allocation to avoid double mutable borrow
    let mini_block_widths: &mut [u8] = unsafe {
      let tmp_slice = self.bit_writer.get_next_byte_ptr(self.num_mini_blocks)?;
      slice::from_raw_parts_mut(tmp_slice.as_ptr() as *mut u8, self.num_mini_blocks)
    };

    for i in 0..self.num_mini_blocks {
      // Find how many values we need to encode - either block size or whatever values
      // left
      let n = cmp::min(self.mini_block_size, self.values_in_block);
      if n == 0 {
        break;
      }

      // Compute the max delta in current mini block
      let mut max_delta = i64::min_value();
      for j in 0..n {
        max_delta = cmp::max(max_delta, self.deltas[i * self.mini_block_size + j]);
      }

      // Compute bit width to store (max_delta - min_delta)
      let bit_width = num_required_bits(self.subtract_u64(max_delta, min_delta));
      mini_block_widths[i] = bit_width as u8;

      // Encode values in current mini block using min_delta and bit_width
      for j in 0..n {
        let packed_value = self.subtract_u64(
          self.deltas[i * self.mini_block_size + j], min_delta);
        self.bit_writer.put_value(packed_value, bit_width);
      }

      // Pad the last block (n < mini_block_size)
      for _ in n..self.mini_block_size {
        self.bit_writer.put_value(0, bit_width);
      }

      self.values_in_block -= n;
    }

    assert!(
      self.values_in_block == 0,
      "Expected 0 values in block, found {}",
      self.values_in_block
    );
    Ok(())
  }
}

// Implementation is shared between Int32Type and Int64Type,
// see `DeltaBitPackEncoderConversion` below for specifics.
impl<T: DataType> Encoder<T> for DeltaBitPackEncoder<T> {
  fn put(&mut self, values: &[T::T]) -> Result<()> {
    if values.is_empty() {
      return Ok(());
    }

    let mut idx;
    // Define values to encode, initialize state
    if self.total_values == 0 {
      self.first_value = self.as_i64(values, 0);
      self.current_value = self.first_value;
      idx = 1;
    } else {
      idx = 0;
    }
    // Add all values (including first value)
    self.total_values += values.len();

    // Write block
    while idx < values.len() {
      let value = self.as_i64(values, idx);
      self.deltas[self.values_in_block] = self.subtract(value, self.current_value);
      self.current_value = value;
      idx += 1;
      self.values_in_block += 1;
      if self.values_in_block == self.block_size {
        self.flush_block_values()?;
      }
    }
    Ok(())
  }

  fn encoding(&self) -> Encoding {
    Encoding::DELTA_BINARY_PACKED
  }

  fn estimated_data_encoded_size(&self) -> usize {
    self.bit_writer.bytes_written()
  }

  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    // Write remaining values
    self.flush_block_values()?;
    // Write page header with total values
    self.write_page_header();

    let mut buffer = ByteBuffer::new();
    buffer.write(self.page_header_writer.flush_buffer())?;
    buffer.write(self.bit_writer.flush_buffer())?;
    buffer.flush()?;

    // Reset state
    self.page_header_writer.clear();
    self.bit_writer.clear();
    self.total_values = 0;
    self.first_value = 0;
    self.current_value = 0;
    self.values_in_block = 0;

    Ok(buffer.consume())
  }
}

/// Helper trait to define specific conversions and subtractions when computing deltas
trait DeltaBitPackEncoderConversion<T: DataType> {
  // Method should panic if type is not supported, otherwise no-op
  #[inline]
  fn assert_supported_type();

  #[inline]
  fn as_i64(&self, values: &[T::T], index: usize) -> i64;

  #[inline]
  fn subtract(&self, left: i64, right: i64) -> i64;

  #[inline]
  fn subtract_u64(&self, left: i64, right: i64) -> u64;
}

impl<T: DataType> DeltaBitPackEncoderConversion<T> for DeltaBitPackEncoder<T> {
  #[inline]
  default fn assert_supported_type() {
    panic!("DeltaBitPackDecoder only supports Int32Type and Int64Type");
  }

  #[inline]
  default fn as_i64(&self, _values: &[T::T], _index: usize) -> i64 { 0 }

  #[inline]
  default fn subtract(&self, _left: i64, _right: i64) -> i64 { 0 }

  #[inline]
  default fn subtract_u64(&self, _left: i64, _right: i64) -> u64 { 0 }
}

impl DeltaBitPackEncoderConversion<Int32Type> for DeltaBitPackEncoder<Int32Type> {
  #[inline]
  fn assert_supported_type() {
    // no-op: supported type
  }

  #[inline]
  fn as_i64(&self, values: &[i32], index: usize) -> i64 {
    values[index] as i64
  }

  #[inline]
  fn subtract(&self, left: i64, right: i64) -> i64 {
    // It is okay for values to overflow, wrapping_sub wrapping around at the boundary
    (left as i32).wrapping_sub(right as i32) as i64
  }

  #[inline]
  fn subtract_u64(&self, left: i64, right: i64) -> u64 {
    // Conversion of i32 -> u32 -> u64 is to avoid non-zero left most bytes in int
    // representation
    (left as i32).wrapping_sub(right as i32) as u32 as u64
  }
}

impl DeltaBitPackEncoderConversion<Int64Type> for DeltaBitPackEncoder<Int64Type> {
  #[inline]
  fn assert_supported_type() {
    // no-op: supported type
  }

  #[inline]
  fn as_i64(&self, values: &[i64], index: usize) -> i64 {
    values[index]
  }

  #[inline]
  fn subtract(&self, left: i64, right: i64) -> i64 {
    // It is okay for values to overflow, wrapping_sub wrapping around at the boundary
    left.wrapping_sub(right)
  }

  #[inline]
  fn subtract_u64(&self, left: i64, right: i64) -> u64 {
    left.wrapping_sub(right) as u64
  }
}

// ----------------------------------------------------------------------
// DELTA_LENGTH_BYTE_ARRAY encoding

/// Encoding for byte arrays to separate the length values and the data.
/// The lengths are encoded using DELTA_BINARY_PACKED encoding, data is
/// stored as raw bytes.
pub struct DeltaLengthByteArrayEncoder<T: DataType> {
  // length encoder
  len_encoder: DeltaBitPackEncoder<Int32Type>,
  // byte array data
  data: Vec<ByteArray>,
  // data size in bytes of encoded values
  encoded_size: usize,
  _phantom: PhantomData<T>
}

impl<T: DataType> DeltaLengthByteArrayEncoder<T> {
  /// Creates new delta length byte array encoder.
  pub fn new() -> Self {
    Self {
      len_encoder: DeltaBitPackEncoder::new(),
      data: vec![],
      encoded_size: 0,
      _phantom: PhantomData
    }
  }
}

impl<T: DataType> Encoder<T> for DeltaLengthByteArrayEncoder<T> {
  default fn put(&mut self, _values: &[T::T]) -> Result<()> {
    panic!("DeltaLengthByteArrayEncoder only supports ByteArrayType");
  }

  fn encoding(&self) -> Encoding {
    Encoding::DELTA_LENGTH_BYTE_ARRAY
  }

  fn estimated_data_encoded_size(&self) -> usize {
    self.len_encoder.estimated_data_encoded_size() + self.encoded_size
  }

  default fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    panic!("DeltaLengthByteArrayEncoder only supports ByteArrayType");
  }
}

impl Encoder<ByteArrayType> for DeltaLengthByteArrayEncoder<ByteArrayType> {
  fn put(&mut self, values: &[ByteArray]) -> Result<()> {
    let lengths: Vec<i32> =
      values.iter().map(|byte_array| byte_array.len() as i32).collect();
    self.len_encoder.put(&lengths)?;
    for byte_array in values {
      self.encoded_size += byte_array.len();
      self.data.push(byte_array.clone());
    }
    Ok(())
  }

  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    let mut total_bytes = vec![];
    let lengths = self.len_encoder.flush_buffer()?;
    total_bytes.extend_from_slice(lengths.data());
    self.data.iter().for_each(|byte_array| {
      total_bytes.extend_from_slice(byte_array.data());
    });
    self.data.clear();
    self.encoded_size = 0;
    Ok(ByteBufferPtr::new(total_bytes))
  }
}

// ----------------------------------------------------------------------
// DELTA_BYTE_ARRAY encoding

/// Encoding for byte arrays, prefix lengths are encoded using DELTA_BINARY_PACKED
/// encoding, followed by suffixes with DELTA_LENGTH_BYTE_ARRAY encoding.
pub struct DeltaByteArrayEncoder<T: DataType> {
  prefix_len_encoder: DeltaBitPackEncoder<Int32Type>,
  suffix_writer: DeltaLengthByteArrayEncoder<T>,
  previous: Vec<u8>,
  _phantom: PhantomData<T>
}

impl<T: DataType> DeltaByteArrayEncoder<T> {
  /// Creates new delta byte array encoder.
  pub fn new() -> Self {
    Self {
      prefix_len_encoder: DeltaBitPackEncoder::<Int32Type>::new(),
      suffix_writer: DeltaLengthByteArrayEncoder::<T>::new(),
      previous: vec![],
      _phantom: PhantomData
    }
  }
}

impl<T: DataType> Encoder<T> for DeltaByteArrayEncoder<T> {
  default fn put(&mut self, _values: &[T::T]) -> Result<()> {
    panic!("DeltaByteArrayEncoder only supports ByteArrayType and FixedLenByteArrayType");
  }

  fn encoding(&self) -> Encoding {
    Encoding::DELTA_BYTE_ARRAY
  }

  fn estimated_data_encoded_size(&self) -> usize {
    self.prefix_len_encoder.estimated_data_encoded_size() +
      self.suffix_writer.estimated_data_encoded_size()
  }

  default fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    panic!("DeltaByteArrayEncoder only supports ByteArrayType and FixedLenByteArrayType");
  }
}

impl Encoder<ByteArrayType> for DeltaByteArrayEncoder<ByteArrayType> {
  fn put(&mut self, values: &[ByteArray]) -> Result<()> {
    let mut prefix_lengths: Vec<i32> = vec![];
    let mut suffixes: Vec<ByteArray> = vec![];

    for byte_array in values {
      let current = byte_array.data();
      // Maximum prefix length that is shared between previous value and current value
      let prefix_len = cmp::min(self.previous.len(), current.len());
      let mut match_len = 0;
      while match_len < prefix_len && self.previous[match_len] == current[match_len] {
        match_len += 1;
      }
      prefix_lengths.push(match_len as i32);
      suffixes.push(byte_array.slice(match_len, byte_array.len() - match_len));
      // Update previous for the next prefix
      self.previous.clear();
      self.previous.extend_from_slice(current);
    }
    self.prefix_len_encoder.put(&prefix_lengths)?;
    self.suffix_writer.put(&suffixes)?;
    Ok(())
  }

  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    // TODO: investigate if we can merge lengths and suffixes
    // without copying data into new vector.
    let mut total_bytes = vec![];
    // Insert lengths ...
    let lengths = self.prefix_len_encoder.flush_buffer()?;
    total_bytes.extend_from_slice(lengths.data());
    // ... followed by suffixes
    let suffixes = self.suffix_writer.flush_buffer()?;
    total_bytes.extend_from_slice(suffixes.data());

    self.previous.clear();
    Ok(ByteBufferPtr::new(total_bytes))
  }
}

impl Encoder<FixedLenByteArrayType> for DeltaByteArrayEncoder<FixedLenByteArrayType> {
  fn put(&mut self, values: &[ByteArray]) -> Result<()> {
    let s: &mut DeltaByteArrayEncoder<ByteArrayType> = unsafe { mem::transmute(self) };
    s.put(values)
  }

  fn flush_buffer(&mut self) -> Result<ByteBufferPtr> {
    let s: &mut DeltaByteArrayEncoder<ByteArrayType> = unsafe { mem::transmute(self) };
    s.flush_buffer()
  }
}


#[cfg(test)]
mod tests {
  use super::super::decoding::*;
  use super::*;
  use schema::types::{ColumnDescriptor, ColumnDescPtr, ColumnPath, Type as SchemaType};
  use std::rc::Rc;
  use util::memory::MemTracker;
  use util::test_common::RandGen;

  const TEST_SET_SIZE: usize = 1024;

  #[test]
  fn test_get_encoders() {
    // supported encodings
    create_and_check_encoder::<Int32Type>(Encoding::PLAIN, None);
    create_and_check_encoder::<Int32Type>(Encoding::DELTA_BINARY_PACKED, None);
    create_and_check_encoder::<Int32Type>(Encoding::DELTA_LENGTH_BYTE_ARRAY, None);
    create_and_check_encoder::<Int32Type>(Encoding::DELTA_BYTE_ARRAY, None);
    create_and_check_encoder::<BoolType>(Encoding::RLE, None);

    // error when initializing
    create_and_check_encoder::<Int32Type>(
      Encoding::RLE_DICTIONARY,
      Some(general_err!("Cannot initialize this encoding through this function"))
    );
    create_and_check_encoder::<Int32Type>(
      Encoding::PLAIN_DICTIONARY,
      Some(general_err!("Cannot initialize this encoding through this function"))
    );

    // unsupported
    create_and_check_encoder::<Int32Type>(
      Encoding::BIT_PACKED,
      Some(nyi_err!("Encoding BIT_PACKED is not supported"))
    );
  }

  #[test]
  fn test_bool() {
    BoolType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    BoolType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
    BoolType::test(Encoding::RLE, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_i32() {
    Int32Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    Int32Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
    Int32Type::test(Encoding::DELTA_BINARY_PACKED, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_i64() {
    Int64Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    Int64Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
    Int64Type::test(Encoding::DELTA_BINARY_PACKED, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_i96() {
    Int96Type::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    Int96Type::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_float() {
    FloatType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    FloatType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_double() {
    DoubleType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    DoubleType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_byte_array() {
    ByteArrayType::test(Encoding::PLAIN, TEST_SET_SIZE, -1);
    ByteArrayType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, -1);
    ByteArrayType::test(Encoding::DELTA_LENGTH_BYTE_ARRAY, TEST_SET_SIZE, -1);
    ByteArrayType::test(Encoding::DELTA_BYTE_ARRAY, TEST_SET_SIZE, -1);
  }

  #[test]
  fn test_fixed_lenbyte_array() {
    FixedLenByteArrayType::test(Encoding::PLAIN, TEST_SET_SIZE, 100);
    FixedLenByteArrayType::test(Encoding::PLAIN_DICTIONARY, TEST_SET_SIZE, 100);
    FixedLenByteArrayType::test(Encoding::DELTA_BYTE_ARRAY, TEST_SET_SIZE, 100);
  }

  #[test]
  fn test_dict_encoded_size() {
    fn run_test<T: DataType>(type_length: i32, values: &[T::T], expected_size: usize) {
      let mut encoder = create_test_dict_encoder::<T>(type_length);
      assert_eq!(encoder.dict_encoded_size(), 0);
      encoder.put(values).unwrap();
      assert_eq!(encoder.dict_encoded_size(), expected_size);
      // We do not reset encoded size of the dictionary keys after flush_buffer
      encoder.flush_buffer().unwrap();
      assert_eq!(encoder.dict_encoded_size(), expected_size);
    }

    // Only 2 variations of values 1 byte each
    run_test::<BoolType>(-1, &[true, false, true, false, true], 2);
    run_test::<Int32Type>(-1, &[1i32, 2i32, 3i32, 4i32, 5i32], 20);
    run_test::<Int64Type>(-1, &[1i64, 2i64, 3i64, 4i64, 5i64], 40);
    run_test::<FloatType>(-1, &[1f32, 2f32, 3f32, 4f32, 5f32], 20);
    run_test::<DoubleType>(-1, &[1f64, 2f64, 3f64, 4f64, 5f64], 40);
    // Int96: len + reference
    run_test::<Int96Type>(
      -1, &[Int96::from(vec![1, 2, 3]), Int96::from(vec![2, 3, 4])], 32);
    run_test::<ByteArrayType>(
      -1, &[ByteArray::from("abcd"), ByteArray::from("efj")], 15);
    run_test::<FixedLenByteArrayType>(
      2, &[ByteArray::from("ab"), ByteArray::from("bc")], 4);
  }

  #[test]
  fn test_estimated_data_encoded_size() {
    fn run_test<T: DataType>(
      encoding: Encoding,
      type_length: i32,
      values: &[T::T],
      initial_size: usize,
      max_size: usize,
      flush_size: usize
    ) {
      let mut encoder = match encoding {
        Encoding::PLAIN_DICTIONARY | Encoding::RLE_DICTIONARY => {
          Box::new(create_test_dict_encoder::<T>(type_length))
        },
        _ => create_test_encoder::<T>(type_length, encoding)
      };
      assert_eq!(encoder.estimated_data_encoded_size(), initial_size);

      encoder.put(values).unwrap();
      assert_eq!(encoder.estimated_data_encoded_size(), max_size);

      encoder.flush_buffer().unwrap();
      assert_eq!(encoder.estimated_data_encoded_size(), flush_size);
    }

    // PLAIN
    run_test::<Int32Type>(Encoding::PLAIN, -1, &vec![123; 1024], 0, 4096, 0);

    // DICTIONARY
    // NOTE: The final size is almost the same because the dictionary entries are
    // preserved after encoded values have been written.
    run_test::<Int32Type>(Encoding::RLE_DICTIONARY, -1, &vec![123, 1024], 11, 68, 66);

    // DELTA_BINARY_PACKED
    run_test::<Int32Type>(Encoding::DELTA_BINARY_PACKED, -1, &vec![123; 1024], 0, 35, 0);

    // RLE
    let mut values = vec![];
    values.extend_from_slice(&vec![true; 16]);
    values.extend_from_slice(&vec![false; 16]);
    run_test::<BoolType>(Encoding::RLE, -1, &values, 0, 2, 0);

    // DELTA_LENGTH_BYTE_ARRAY
    run_test::<ByteArrayType>(
      Encoding::DELTA_LENGTH_BYTE_ARRAY,
      -1,
      &[ByteArray::from("ab"), ByteArray::from("abc")],
      0,
      5, // only value bytes, length encoder is not flushed yet
      0
    );

    // DELTA_BYTE_ARRAY
    run_test::<ByteArrayType>(
      Encoding::DELTA_BYTE_ARRAY,
      -1,
      &[ByteArray::from("ab"), ByteArray::from("abc")],
      0,
      3, // only suffix bytes, length encoder is not flushed yet
      0
    );
  }

  // See: https://github.com/sunchao/parquet-rs/issues/47
  #[test]
  fn test_issue_47() {
    let mut encoder = create_test_encoder::<ByteArrayType>(0, Encoding::DELTA_BYTE_ARRAY);
    let mut decoder = create_test_decoder::<ByteArrayType>(0, Encoding::DELTA_BYTE_ARRAY);

    let mut input = vec![];
    input.push(ByteArray::from("aa"));
    input.push(ByteArray::from("aaa"));
    input.push(ByteArray::from("aa"));
    input.push(ByteArray::from("aaa"));
    let mut output = vec![ByteArray::default(); input.len()];

    let mut result = put_and_get(
      &mut encoder, &mut decoder, &input[..2], &mut output[..2]);
    assert!(result.is_ok(), "first put_and_get() failed with: {}", result.unwrap_err());
    result = put_and_get(&mut encoder, &mut decoder, &input[2..], &mut output[2..]);
    assert!(result.is_ok(), "second put_and_get() failed with: {}", result.unwrap_err());
    assert_eq!(output, input);
  }

  trait EncodingTester<T: DataType> {
    fn test(enc: Encoding, total: usize, type_length: i32) {
      let result = match enc {
        Encoding::PLAIN_DICTIONARY | Encoding::RLE_DICTIONARY =>{
          Self::test_dict_internal(total, type_length)
        },
        enc @ _ => Self::test_internal(enc, total, type_length)
      };

      assert!(
        result.is_ok(),
        "Expected result to be OK but got err:\n {}",
        result.unwrap_err()
      );
    }

    fn test_internal(enc: Encoding, total: usize, type_length: i32) -> Result<()>;

    fn test_dict_internal(total: usize, type_length: i32) -> Result<()>;
  }

  impl<T: DataType> EncodingTester<T> for T {
    fn test_internal(enc: Encoding, total: usize, type_length: i32) -> Result<()> {
      let mut encoder = create_test_encoder::<T>(type_length, enc);
      let mut decoder = create_test_decoder::<T>(type_length, enc);
      let mut values = <T as RandGen<T>>::gen_vec(type_length, total);
      let mut result_data = vec![T::T::default(); total];

      let mut actual_total = put_and_get(
        &mut encoder, &mut decoder, &values[..], &mut result_data[..])?;
      assert_eq!(actual_total, total);
      assert_eq!(result_data, values);

      // Encode more data after flush and test with decoder

      values = <T as RandGen<T>>::gen_vec(type_length, total);
      actual_total = put_and_get(
        &mut encoder, &mut decoder, &values[..], &mut result_data[..])?;
      assert_eq!(actual_total, total);
      assert_eq!(result_data, values);

      Ok(())
    }

    fn test_dict_internal(total: usize, type_length: i32) -> Result<()> {
      let mut encoder = create_test_dict_encoder::<T>(type_length);
      let mut values = <T as RandGen<T>>::gen_vec(type_length, total);
      encoder.put(&values[..])?;

      let mut data = encoder.flush_buffer()?;
      let mut decoder = create_test_dict_decoder::<T>();
      let mut dict_decoder = PlainDecoder::<T>::new(type_length);
      dict_decoder.set_data(encoder.write_dict()?, encoder.num_entries())?;
      decoder.set_dict(Box::new(dict_decoder))?;
      let mut result_data = vec![T::T::default(); total];
      decoder.set_data(data, total)?;
      let mut actual_total = decoder.get(&mut result_data)?;

      assert_eq!(actual_total, total);
      assert_eq!(result_data, values);

      // Encode more data after flush and test with decoder

      values = <T as RandGen<T>>::gen_vec(type_length, total);
      encoder.put(&values[..])?;
      data = encoder.flush_buffer()?;

      let mut dict_decoder = PlainDecoder::<T>::new(type_length);
      dict_decoder.set_data(encoder.write_dict()?, encoder.num_entries())?;
      decoder.set_dict(Box::new(dict_decoder))?;
      decoder.set_data(data, total)?;
      actual_total = decoder.get(&mut result_data)?;

      assert_eq!(actual_total, total);
      assert_eq!(result_data, values);

      Ok(())
    }
  }

  fn put_and_get<T: DataType>(
    encoder: &mut Box<Encoder<T>>, decoder: &mut Box<Decoder<T>>,
    input: &[T::T], output: &mut [T::T]
  ) -> Result<usize> {
    encoder.put(input)?;
    let data = encoder.flush_buffer()?;
    decoder.set_data(data, input.len())?;
    decoder.get(output)
  }

  fn create_and_check_encoder<T: DataType>(
    encoding: Encoding, err: Option<ParquetError>
  ) {
    let descr = create_test_col_desc_ptr(-1, T::get_physical_type());
    let mem_tracker = Rc::new(MemTracker::new());
    let encoder = get_encoder::<T>(descr, encoding, mem_tracker);
    match err {
      Some(parquet_error) => {
        assert!(encoder.is_err());
        assert_eq!(encoder.err().unwrap(), parquet_error);
      },
      None => {
        assert!(encoder.is_ok());
        assert_eq!(encoder.unwrap().encoding(), encoding);
      }
    }
  }

  // Creates test column descriptor.
  fn create_test_col_desc_ptr(type_len: i32, t: Type) -> ColumnDescPtr {
    let ty = SchemaType::primitive_type_builder("t", t)
      .with_length(type_len)
      .build()
      .unwrap();
    Rc::new(ColumnDescriptor::new(Rc::new(ty), None, 0, 0, ColumnPath::new(vec![])))
  }

  fn create_test_encoder<T: DataType>(
    type_len: i32, enc: Encoding
  ) -> Box<Encoder<T>> {
    let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
    let mem_tracker = Rc::new(MemTracker::new());
    get_encoder(desc, enc, mem_tracker).unwrap()
  }

  fn create_test_decoder<T: DataType>(
    type_len: i32, enc: Encoding
  ) -> Box<Decoder<T>> {
    let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
    get_decoder(desc, enc).unwrap()
  }

  fn create_test_dict_encoder<T: DataType>(type_len: i32) -> DictEncoder<T> {
    let desc = create_test_col_desc_ptr(type_len, T::get_physical_type());
    let mem_tracker = Rc::new(MemTracker::new());
    DictEncoder::<T>::new(desc, mem_tracker)
  }

  fn create_test_dict_decoder<T: DataType>() -> DictDecoder<T> {
    DictDecoder::<T>::new()
  }
}